Electromyographic response is altered during robotic surgical training with augmented feedback.

نویسندگان

  • Timothy N Judkins
  • Dmitry Oleynikov
  • Nick Stergiou
چکیده

There is a growing prevalence of robotic systems for surgical laparoscopy. We previously developed quantitative measures to assess robotic surgical proficiency, and used augmented feedback to enhance training to reduce applied grip force and increase speed. However, there is also a need to understand the physiological demands of the surgeon during robotic surgery, and if training can reduce these demands. Therefore, the goal of this study was to use clinical biomechanical techniques via electromyography (EMG) to investigate the effects of real-time augmented visual feedback during short-term training on muscular activation and fatigue. Twenty novices were trained in three inanimate surgical tasks with the da Vinci Surgical System. Subjects were divided into five feedback groups (speed, relative phase, grip force, video, and control). Time- and frequency-domain EMG measures were obtained before and after training. Surgical training decreased muscle work as found from mean EMG and EMG envelopes. Grip force feedback further reduced average and total muscle work, while speed feedback increased average muscle work and decreased total muscle work. Training also increased the median frequency response as a result of increased speed and/or reduced fatigue during each task. More diverse motor units were recruited as revealed by increases in the frequency bandwidth post-training. We demonstrated that clinical biomechanics using EMG analysis can help to better understand the effects of training for robotic surgery. Real-time augmented feedback during training can further reduce physiological demands. Future studies will investigate other means of feedback such as biofeedback of EMG during robotic surgery training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced robotic surgical training using augmented visual feedback.

The goal of this study was to enhance robotic surgical training via real-time augmented visual feedback. Thirty novices (medical students) were divided into 5 feedback groups (speed, relative phase, grip force, video, and control) and trained during 1 session in 3 inanimate surgical tasks with the da Vinci Surgical System. Task completion time, distance traveled, speed, curvature, relative phas...

متن کامل

Real-time augmented feedback benefits robotic laparoscopic training.

Robotic laparoscopic surgery has revolutionized minimally invasive surgery for treatment of abdominal pathologies. However, current training techniques rely on subjective evaluation. There is a lack of research on the type of tasks that should be used for training. Robotic surgical systems also do not currently have the ability to provide feedback to the surgeon regarding success of performing ...

متن کامل

Computerized visual feedback: an adjunct to robotic-assisted gait training.

BACKGROUND AND PURPOSE Robotic devices for walking rehabilitation allow new possibilities for providing performance-related information to patients during gait training. Based on motor learning principles, augmented feedback during robotic-assisted gait training might improve the rehabilitation process used to regain walking function. This report presents a method to provide visual feedback imp...

متن کامل

Skills learning in robot-assisted surgery is benefited by task-specific augmented feedback.

BACKGROUND Providing augmented visual feedback is one way to enhance robot-assisted surgery (RAS) training. However, it is unclear whether task specificity should be considered when applying augmented visual feedback. METHODS Twenty-two novice users of the da Vinci Surgical System underwent testing and training in 3 tasks: simple task, bimanual carrying (BC); intermediate task, needle passing...

متن کامل

Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.

Background The amount of direct hand-tool-tissue interaction and feedback in minimally invasive surgery varies from being attenuated in laparoscopy to being completely absent in robotic minimally invasive surgery. The role of haptic feedback during surgical skill acquisition and its emphasis in training have been a constant source of controversy. This review discusses the major developments in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2009